As $x \to \, -\infty$, the $x$-term becomes larger and larger in the negative direction, while the square-root term becomes larger and larger in the positive direciton. We thus don’t immediately know what the difference between the two terms is. $(“-\infty + \infty”$ could be anything — it is an “indeterminate expression,” meaning we have more work to do.)
To proceed, we’ll use the same approach we used earlier when evaluating limits that had square roots in them: we’ll rationalize the expression by multiplying by its conjugate $x – \sqrt{x^2 + ax}$ divided by itself:
\[ \begin{align*}
\lim_{x \to \, -\infty}\left(x + \sqrt{x^2 + ax} \right) &= \lim_{x \to \, -\infty}\left(\frac{x + \sqrt{x^2 + ax}}{1} \right) \cdot \frac{x – \sqrt{x^2 + ax}}{x – \sqrt{x^2 + ax}} \\[8px]
&= \lim_{x \to\, -\infty} \frac{x^2 – x \sqrt{x^2 + ax} + x \sqrt{x^2 + ax} – \left(\sqrt{x^2 + ax} \right)^2}{x – \sqrt{x^2 + ax}}\\[8px]
&= \lim_{x \to \,-\infty} \frac{x^2 -\left(x^2 + ax \right)^2}{x – \sqrt{x^2 + ax}} \\[8px]
&= \lim_{x \to\, -\infty} \frac{-ax}{x – \sqrt{x^2 + ax}}
\end{align*} \] Let’s now use our usual trick of dividing the numerator and the denominator by the
largest power in the denominator. That power is $x:$ while there is an $x^2$ present, it is under a square root $\left(\sqrt{x^2 + …} \right)$, and so its effective power is $x^1$.
Since we’re looking at $x \to\, -\infty$ we’re interested only in negative values of $x$, and so we have $x = -\sqrt{x^2}$.
\[ \begin{align*}
\phantom{x + \sqrt{x^2 + ax} } &= \lim_{x \to \, -\infty} \frac{\dfrac{-ax}{x}}{\dfrac{x – \sqrt{x^2 + ax}}{x}}\\[8px]
&= \lim_{x \to \, -\infty} \frac{-a}{\dfrac{x}{x} – \dfrac{\sqrt{x^2 + ax}}{-\sqrt{x^2}}}\\[8px]
&= \lim_{x \to\, -\infty}\frac{-a}{1 + \sqrt{1 + \frac{a}{x}}} \\[8px]
&= \frac{-a}{1 + \sqrt{1}} \\[8px]
&= \frac{-a}{2} \quad \cmark
\end{align*} \]
Note that in the second to last line, we used the fact that $\displaystyle{\lim_{x \to\, -\infty} \frac{a}{x} = 0 }.$
[hide solution]
☕ Buy us a coffee If we've helped, please consider
giving a little something back.
Thank you! 😊